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Abstract. Kishore (1963Proc. Am. Math. Socl4 527) considered the Rayleigh functions
on(V) = Y 5o jl;f", n =12, ..., wheret+j,, are the (non-zero) zeros of the Bessel function
J,(z) and provided a convolution-type sum formula for findimgin terms ofoy, ..., 0,-1. His

main tool was the recurrence relation for Bessel functions. Here we extend this result to a larger
class of functions by using Riccati differential equations. We get new results for the zeros of certain
combinations of Bessel functions and their first and second derivatives as well as recovering some
results of Buchholz for zeros of confluent hypergeometric functions.

1. Introduction

The Rayleigh functions are defined, for example, in [1, p 502], by the formula
o) =Y " n=12,... (1)
k=1
where+ j,; are the zeros of the Bessel function
N (1) (z/2)2
,(z) = AR e a— 2
5@ ;nlr‘(v+n+l) )
They form the basis of an old method due to Euler, Rayleigh and others for evaluating the
zeros. For example, in the case- —1, the inequalities
[O’,,(V)]_l/" < ]1)21 < 0,(v)/0p+1(v) n=12...

provide infinite sequences of successively improving upper and lower bounffs.f@everal
authors have considered the question of finding ‘sum rules’ or formulag foy. By a method
originating with Euler (see [1, pp 500ff] for details; various ramifications were considered
recently in [2]), we can find all the, (v) in terms of the coefficients in the series (2). If we
want to deal (as in [3]) with properties of thg(v) as functions of, there is a useful compact
convolution formula due to Kishore [4]

n—1

1
on(v) = —— ;okw) O (V) ®3)

from which thes, (v) may be found successively, starting from
o1(v) = 1/[4(v + D] 4)
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The question arises as to whether there are Kishore-type formulae for sums of zeros of other
special functions such as the first and second derivatives of the Bessel function. In [5] there is
a variant of this result for the zeros of the more general function

Ny (z) = az?J!(z) + bzJ.(2) + cJ,(2) 5)

considered by Mercer [6]. The result of [5] gave a method of finding the reciprocal power
sums

o0
T,(v) = Zx\jkz” n=12... (6)
k=1

wherex,; are the zeros of the functiaN, (z). The main result of [5] expresseg in terms

of i,k =1,...,n—1andoy, k = 1,...,n. It seems desirable to expregsin terms

of i,k = 1,...,n — 1 only. We do this here by using the Riccati equation satisfied by
2 "/2N, (x¥/?). We also record the second-order linear differential equations satisfigg(by

and byz /2N, (z%/?) since these do not seem to appear in the literature and may prove useful
for other purposes.

The functionss,,(v) andz,(v) can be extended to non-integer and even complex values
of n, providing generalized zeta functions. Thecase has been dealt with frequently [7]; the
idea has even been extended to zerag-Bessel functions [8]. Here we confine our attention
to the case of positive integral

In section 4, we apply our method to obtain power sums for zeros of confluent
hypergeometric functions.

2. Differential equations for functions related to Bessel functions

The Bessel functioy = J, (z) satisfies the differential equation

2y +zy + (22 =19y =0 )
and the functiory = zJ/(z) + c¢J, (z) satisfies [9, p 13] the differential equation
ZZ(ZZ _ 1)2 +62)y,, _ Z(Z2 + 1)2 _ cz)y’ + [(ZZ _ 1)2)2 + ZCZZ + CZ(ZZ _ v2)]y =0.

Here we record the more general second-order linear differential equation satisfied by the
function

Y = N,(2) = az?J](z) + bzJ}(2) + cJ, (2). (8)
Itis
22"+ A(2)zY' +[B(z) +z2 =12y =0 (9)
where
30274+ pz2 +
AQR) = — P2 1
az* — pzctq
2a(a + b)z* + 2rz?
B(2) = —+ 2
a7z — pzc+gq
with

p= 2a(av® +¢) + (a® — b?)

g = (@v?+¢)?> —v%(a — b)?
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and
r =av?®(3a — b) +c(a +b).
We found equation (9) by repeated use of
2 (2) = vJy(2) — 2Ju+1(2) (10)

to express the derivative§™ (z),n = 1,2, ... in terms ofJ, (z), J,+1(z) and discovered an
appropriate vanishing linear combination®f(z), N/ (z) andN/ (z). Of course, once (9) is
known, it is easy to verify tha¥, (z), given by (8), satisfies it.

Itis convenient to consider the function

(@) =z""?N, (%) (11)

where we choose that branchf? which is positive for; > 0. Using (9), we find that the
functiony, (z) satisfies

d?y, dy,
4:2—dty2 +Av+2+ 2A(11/2)]td—yt +[t — v+ vAEY?) + B2y, = 0. (12)
It is well known that ify satisfies

Y+ Py +Q@)y=0 (13)
thenu = y’/y satisfies the Riccati equation

(;_L; + P(tu+ Q1) +u? = 0. (14)
Applying this to (12), we find that, witly, (z) given by (8),u = y|(z)/y.(z) satisfies

d
4 (a%t? — pr + q) |:d—1: + uz] +4[a?(v — D% — vpr + q+Du+ a’t?

+[p +4a®v — 2a(a +b)]t +2vp +q + 2r = 0. (15)

3. Functions of Rayleigh type

The even entire functiog VN, (z) has an infinite set of zerasr,, n = 1, 2, ... with

D I ? < o0

so the zeros of, (z) areg; = t2, with

Z |§k71| < Q.

Thus
2 [ee)
R 12, avi+c+(b—a)w ( _i)
W@ =N = =t ,Q - (16)

The constant multiplicative factor is obtained from the series (2). The validity of this infinite
product expansion follows from facts on entire functions of finite order [10, chapter 8]. See
[2] for a more complete discussion, with references, on the zertys @f.
We may differentiate (16) logarithmically [11], to obtain
N A Ya . X1 {

yv(z) k=1 1- Z/é‘k B k=1 {k n=0 ]:Z
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This gives
5,7 . (2)
v_ — _2 n
y @ ZZZ /8-

But we may interchange the order of summation here (since the iterated series converges
absolutely) to obtain

D=2 Y g =2 e (17
yv(z) n=1 k=1 =1
where
o0
= 4" (18)
k=1
Using
o0
- Z Tk+le
k=0
we obtain

00 k—1
=2 | 2w |
m=1

k=2
Substituting in (15), and comparing coefficients of powers, afe obtain
2vp+q+2r

49(v+1) (19)
dg(v+ 21 = 4q1'12 +4vpTy — p — 4a®v + 2a(a + b)

) =

4q(v +3)t3 = dp(v + D)1z — 4a?(v — D)1y + a® + 8gryto — dpT? (20)
and, fork > 3,
gk +v+ D1pey = p(k +v— Dy — az(k +v =371

+q2rmrk m+1—p2rmrk mta Zrmtk — (21)

In the special case = b = O,c =1 (and hencq; = 0,9 = 1,r = 0), where we
are dealing with the zeros of the Bessel function, these reduce, as they should, to (4) and the
convolution formula (3) fow,,n = 2,3, ....

In the special case = ¢ = 0,b = 1 (and hence = —1,¢9 = —v?,r = 0), we are
dealing with the non-trivial zeros of the functioij(z); (19)—(21) become

v+2
= —
4(v + v
—41)21:12 —4vr +1 (22)
T =
2 —2(v + 2)
V2w +3)3= v+ D1+ 2110 — 112
and fork > 3,
)
—V2(k+v+ Dy = —(k+v - —v Z T Tk—m+1 + Z TnThem- (23)

m=1 m=1
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In particular, these lead to

o 1 1v2+8+8
= 2 1= 24
T2 k=1[]vk] 16U2(V+ 1)2(1) +2) ( )

(25)

00 3 2
= Z[j/k]_G _ i v+ 16v- + 38y + 24
= 323+ D3V +2)(v +3)

the same results as are obtained by the power-series method in [2].

4. Confluent hypergeometric functions

Buchholz [12] studied the non-trivial zerag of the function
b/2e=2/2
M, = ——1Fi(a; b; 26
uy2(2) ra+0 1F1(a; b; 2) (26)
and showed that these zeros are all simple and that there are infinitely many of them in the
case where # —n. He considered

r=1

and showed that it converges for all> 1 but that it is divergent fop < 1.

He also gave explicit formulae fa§s, ..., S¢ and a method (far from explicit) for
expressing;+1 as a linear combination &b, ..., S;_1. In (34) below we give a convolution
formula for this task.

The functionw = 1F1(a; b; 7) satisfies

w'+b—-—2)w —aw =0 27)
sou = w'/w satisfies the Riccati equation
' +(b—2)u—a+zu®* =0, (28)
From the Weierstrass product representation theorem, we obtain
= z
w=e"]] (1 - —) e/, (29)
k=1 Zk

Differentiating (29) logarithmically [11],

_w@ _a > Tz 1
“@D =T " Z[l—z/zk }
1

2k

=y S (30)

where the interchange of orders of summation here is justified by the absolute convergence of
the iterated series. From this we have

o0
w'(z) = — ZkSk+le (31)
=1
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and

o) [ee) k—1
[u(@)? = (a/b)* = 2a/b) Y _ Siraz“ + ) (Z sm+1sk_,n+1> . (32)
k=1

k=2 \m=1

Thus equation (28) becomes

= k 207 & k+1 a®> a S : k+1
=D B HSet 1 1= T Y ST s — sty | D SuSime | =0,
k=1 k=1 k=2 \m=2

(33)
Comparing the coefficients af, k = 1, 2, ... in (33) we obtain:

S, — a(a — b)

27 p2b+ 1)
. a(a — b)(b — 2a)

TR+ )b +2) (34)

1 k—1
= — + m —m k = 9, 4, ceee

Sk+1 ST h) |:(b 2a) S, bn;zs Sk +1] 3

This leads, in particular, to
_a(a —b)[a(a — b)(5b +6) +b?(b + 1)]
b*(b+1)2(b+2)(b+3)
etc, agreeing with the results found by Buchholz [12].
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