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Abstract. Kishore (1963Proc. Am. Math. Soc.14 527) considered the Rayleigh functions
σn(ν) =

∑∞
k=1 j

−2n
νk , n = 1, 2, . . . , where±jνk are the (non-zero) zeros of the Bessel function

Jν(z) and provided a convolution-type sum formula for findingσn in terms ofσ1, . . . , σn−1. His
main tool was the recurrence relation for Bessel functions. Here we extend this result to a larger
class of functions by using Riccati differential equations. We get new results for the zeros of certain
combinations of Bessel functions and their first and second derivatives as well as recovering some
results of Buchholz for zeros of confluent hypergeometric functions.

1. Introduction

The Rayleigh functions are defined, for example, in [1, p 502], by the formula

σn(ν) =
∞∑
k=1

j−2n
νk n = 1, 2, . . . (1)

where±jνk are the zeros of the Bessel function

Jν(z) =
∞∑
n=0

(−1)n(z/2)2n+ν

n!0(ν + n + 1)
. (2)

They form the basis of an old method due to Euler, Rayleigh and others for evaluating the
zeros. For example, in the caseν > −1, the inequalities

[σn(ν)]
−1/n < j2

ν1 < σn(ν)/σn+1(ν) n = 1, 2, . . .

provide infinite sequences of successively improving upper and lower bounds forj2
ν1. Several

authors have considered the question of finding ‘sum rules’ or formulae forσn(ν). By a method
originating with Euler (see [1, pp 500ff] for details; various ramifications were considered
recently in [2]), we can find all theσn(ν) in terms of the coefficients in the series (2). If we
want to deal (as in [3]) with properties of theσn(ν) as functions ofν, there is a useful compact
convolution formula due to Kishore [4]

σn(ν) = 1

ν + n

n−1∑
k=1

σk(ν) σn−k(ν) (3)

from which theσn(ν) may be found successively, starting from

σ1(ν) = 1/[4(ν + 1)]. (4)
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The question arises as to whether there are Kishore-type formulae for sums of zeros of other
special functions such as the first and second derivatives of the Bessel function. In [5] there is
a variant of this result for the zeros of the more general function

Nν(z) = az2J ′′ν (z) + bzJ ′ν(z) + cJν(z) (5)

considered by Mercer [6]. The result of [5] gave a method of finding the reciprocal power
sums

τn(ν) =
∞∑
k=1

x−2n
νk n = 1, 2, . . . (6)

wherexνk are the zeros of the functionNν(z). The main result of [5] expressedτn in terms
of τk, k = 1, . . . , n − 1 and σk, k = 1, . . . , n. It seems desirable to expressτn in terms
of τk, k = 1, . . . , n − 1 only. We do this here by using the Riccati equation satisfied by
z−ν/2Nν(x1/2). We also record the second-order linear differential equations satisfied byNν(z)

and byz−ν/2Nν(z1/2) since these do not seem to appear in the literature and may prove useful
for other purposes.

The functionsσn(ν) andτn(ν) can be extended to non-integer and even complex values
of n, providing generalized zeta functions. Theσn case has been dealt with frequently [7]; the
idea has even been extended to zeros ofq-Bessel functions [8]. Here we confine our attention
to the case of positive integraln.

In section 4, we apply our method to obtain power sums for zeros of confluent
hypergeometric functions.

2. Differential equations for functions related to Bessel functions

The Bessel functiony = Jν(z) satisfies the differential equation

z2y ′′ + zy ′ + (z2 − ν2)y = 0 (7)

and the functiony = zJ ′ν(z) + cJν(z) satisfies [9, p 13] the differential equation

z2(z2 − ν2 + c2)y ′′ − z(z2 + ν2 − c2)y ′ + [(z2 − ν2)2 + 2cz2 + c2(z2 − ν2)]y = 0.

Here we record the more general second-order linear differential equation satisfied by the
function

Y = Nν(z) = az2J ′′ν (z) + bzJ ′ν(z) + cJν(z). (8)

It is

z2Y ′′ +A(z)zY ′ + [B(z) + z2 − ν2]Y = 0 (9)

where

A(z) = −3a2z4 + pz2 + q

a2z4 − pz2 + q

B(z) = 2a(a + b)z4 + 2rz2

a2z4 − pz2 + q

with

p = 2a(aν2 + c) + (a2 − b2)

q = (aν2 + c)2 − ν2(a − b)2
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and

r = aν2(3a − b) + c(a + b).

We found equation (9) by repeated use of

zJ ′ν(z) = νJν(z)− zJν+1(z) (10)

to express the derivativesJ (n)ν (z), n = 1, 2, . . . in terms ofJν(z), Jν+1(z) and discovered an
appropriate vanishing linear combination ofNν(z), N ′ν(z) andN ′′ν (z). Of course, once (9) is
known, it is easy to verify thatNν(z), given by (8), satisfies it.

It is convenient to consider the function

yν(z) = z−ν/2Nν(z1/2) (11)

where we choose that branch ofz1/2 which is positive forz > 0. Using (9), we find that the
functionyν(z) satisfies

4t2
d2yν

dt2
+ [4ν + 2 + 2A(t1/2)]t

dyν
dt

+ [t − ν + νA(t1/2) +B(t1/2)]yν = 0. (12)

It is well known that ify satisfies

y ′′ + P(t)y ′ +Q(t)y = 0 (13)

thenu = y ′/y satisfies the Riccati equation

du

dt
+ P(t)u +Q(t) + u2 = 0. (14)

Applying this to (12), we find that, withyν(z) given by (8),u = y ′ν(z)/yν(z) satisfies

4t (a2t2 − pt + q)

[
du

dt
+ u2

]
+ 4[a2(ν − 1)t2 − νpt + q(ν + 1)]u + a2t2

+[p + 4a2ν − 2a(a + b)]t + 2νp + q + 2r = 0. (15)

3. Functions of Rayleigh type

The even entire functionz−νNν(z) has an infinite set of zeros±tn, n = 1, 2, . . . with∑
|t−2
k | <∞

so the zeros ofyν(z) areζk = t2k , with∑
|ζ−1
k | <∞.

Thus

yν(z) = z−ν/2Nν(z1/2) = aν2 + c + (b − a)ν
2ν0(ν + 1)

∞∏
k=1

(
1− z

ζk

)
. (16)

The constant multiplicative factor is obtained from the series (2). The validity of this infinite
product expansion follows from facts on entire functions of finite order [10, chapter 8]. See
[2] for a more complete discussion, with references, on the zeros ofNν(z).

We may differentiate (16) logarithmically [11], to obtain

y ′ν(z)
yν(z)

= −
∞∑
k=1

1/ζk
1− z/ζk = −

∞∑
k=1

1

ζk

∞∑
n=0

zn

ζ nk
.
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This gives

2z
y ′ν(z)
yν(z)

= −2
∞∑
k=1

∞∑
n=1

zn/ζ nk .

But we may interchange the order of summation here (since the iterated series converges
absolutely) to obtain

2z
y ′ν(z)
yν(z)

= −2
∞∑
n=1

zn
∞∑
k=1

ζ−nk = −2
∞∑
n=1

τnz
n (17)

where

τn =
∞∑
k=1

ζ−nk . (18)

Using

u = −
∞∑
k=0

τk+1z
k

we obtain

u2 =
∞∑
k=2

[
k−1∑
m=1

τmτk−m

]
zk−2.

Substituting in (15), and comparing coefficients of powers ofz, we obtain

τ1(ν) = 2νp + q + 2r

4q(ν + 1)

4q(ν + 2)τ2 = 4qτ 2
1 + 4νpτ1− p − 4a2ν + 2a(a + b)

(19)

4q(ν + 3)τ3 = 4p(ν + 1)τ2 − 4a2(ν − 1)τ1 + a2 + 8qτ1τ2 − 4pτ 2
1 (20)

and, fork > 3,

q(k + ν + 1)τk+1 = p(k + ν − 1)τk − a2(k + ν − 3)τk−1

+q
k∑

m=1

τmτk−m+1− p
k−1∑
m=1

τmτk−m + a2
k−2∑
m=1

τmτk−m−1. (21)

In the special casea = b = 0, c = 1 (and hencep = 0, q = 1, r = 0), where we
are dealing with the zeros of the Bessel function, these reduce, as they should, to (4) and the
convolution formula (3) forσn, n = 2, 3, . . . .

In the special casea = c = 0, b = 1 (and hencep = −1, q = −ν2, r = 0), we are
dealing with the non-trivial zeros of the functionJ ′ν(z); (19)–(21) become

τ1 = ν + 2

4(ν + 1)ν

τ2 = −4ν2τ 2
1 − 4ντ1 + 1

−4ν2(ν + 2)

ν2(ν + 3)τ3 = (ν + 1)τ2 + 2ν2τ1τ2 − τ 2
1

(22)

and fork > 3,

−ν2(k + ν + 1)τk+1 = −(k + ν − 1)τk − ν2
k−1∑
m=1

τmτk−m+1 +
k−2∑
m=1

τmτk−m. (23)
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In particular, these lead to

τ2 =
∞∑
k=1

[j ′νk]
−4 = 1

16

ν2 + 8ν + 8

ν2(ν + 1)2(ν + 2)
(24)

τ3 =
∞∑
k=1

[j ′νk]
−6 = 1

32

ν3 + 16ν2 + 38ν + 24

ν3(ν + 1)3(ν + 2)(ν + 3)
(25)

the same results as are obtained by the power-series method in [2].

4. Confluent hypergeometric functions

Buchholz [12] studied the non-trivial zerosaλ of the function

Mκ,µ/2(z) = zb/2e−z/2

0(1 +µ)
1F1(a; b; z) (26)

and showed that these zeros are all simple and that there are infinitely many of them in the
case wherea 6= −n. He considered

Sp =
∞∑
λ=1

a
−p
λ

and showed that it converges for allp > 1 but that it is divergent forp 6 1.
He also gave explicit formulae forS2, . . . , S6 and a method (far from explicit) for

expressingSk+1 as a linear combination ofS2, . . . , Sk−1. In (34) below we give a convolution
formula for this task.

The functionw = 1F1(a; b; z) satisfies

zw′′ + (b − z)w′ − aw = 0 (27)

sou = w′/w satisfies the Riccati equation

zu′ + (b − z)u− a + zu2 = 0. (28)

From the Weierstrass product representation theorem, we obtain

w = eaz/b
∞∏
k=1

(
1− z

zk

)
ez/zk . (29)

Differentiating (29) logarithmically [11],

u(z) = w′(z)
w(z)

= a

b
−
∞∑
k=1

[
1/zk

1− z/zk −
1

zk

]

= a

b
−
∞∑
k=1

1

zk

{[
1− z

zk

]−1

− 1

}

= a

b
−
∞∑
k=1

Sk+1z
k (30)

where the interchange of orders of summation here is justified by the absolute convergence of
the iterated series. From this we have

zu′(z) = −
∞∑
k=1

kSk+1z
k (31)
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and

[u(z)]2 = (a/b)2 − 2(a/b)
∞∑
k=1

Sk+1z
k +

∞∑
k=2

(
k−1∑
m=1

Sm+1Sk−m+1

)
zk. (32)

Thus equation (28) becomes

−
∞∑
k=1

(b + k)Sk+1z
k +

[
1− 2a

b

] ∞∑
k=1

Sk+1z
k+1 +

[
a2

b2
− a
b

]
z +

∞∑
k=2

(
k∑

m=2

SmSk−m+2

)
zk+1 = 0.

(33)

Comparing the coefficients ofzk, k = 1, 2, . . . in (33) we obtain:

S2 = a(a − b)
b2(b + 1)

S3 = a(a − b)(b − 2a)

b3(b + 1)(b + 2)

Sk+1 = 1

b(k + b)

[
(b − 2a)Sk + b

k−1∑
m=2

SmSk−m+1

]
k = 3, 4, . . . .

(34)

This leads, in particular, to

S4 = a(a − b)[a(a − b)(5b + 6) + b2(b + 1)]

b4(b + 1)2(b + 2)(b + 3)

etc, agreeing with the results found by Buchholz [12].
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